
TRAP + Anti-TRAP Tutorial

©2013-2014 Elihu Ihms, last modifed 2014-01-24

Introduction
TRAP and Anti-TRAP are two homooligomeric components of the tryptophan regulatory
system in several species of Bacillus. Under some conditions, they reversibly aggregate to
form long, heterogeneous chains consisting of multiple copies of each oligomer. In this
tutorial, you will use several of the MESMER command-line utilities to generate targets, build
component fles, ft targets, and make several plots from synthetic data obtained from a
model of this system.

During the tutorial, you will be typing commands into your command-line terminal. This
tutorial assumes a Linux, Unix, or MacOS X based terminal environment, although in some
instances the Windows™ command-line will be similar. Examples of commands the user
should type will be preceded by a generic prompt character ($), and be set in a monospace
typeface.

You may also need a text editor capable of outputting raw ASCII text. On linux, EMACS or vi
will work nicely. Nano/pico is also available on most systems. On MacOS™, the free program
TextWrangler is highly recommended. If using Windows™, you may be able to use Notepad,
although due to the diferences in line endings, lines in the provided tutorial fles may appear
“scrunched” together.

Step I – Compile component fles
We frst need to generate “component” fles that contain the calculated attributes (SAXS
profles, FRET distances, etc.) of the possible confgurations our system can adopt. For the
purposes of this tutorial, SAXS profles, and FRET lifetime curves for 18 diferent theoretical
TRAP+AT structures have already been computed. Files containing these curves are present in
the directories "saxs_data" and "fret_data" respectively.

When guided by the provided "component_template.txt" template , the MESMER utility
make_components will combine these data into properly-formatted component fles. Let's take
a look:

$ cat component_template.txt
NAME $0

SAXS
%1

CURV
%2

All components must possess a unique NAME. When you run make_components, the name for
each component will automatically replace the wildcard “$0” symbol in the template. The lines
immediately following the SAXS and CURV lines are also a type of wildcard, which will be
explained shortly. They essentially tell make_components to “insert data here”.

Before we continue, we will need to build a fle containing the component's names. We could
do this by hand, but if we have more than several dozen components that could become
extremely tedious. It is much easier to let the computer do the work:

$ ls -1 pdbs | sed -e 's/.pdb//' > names.txt

This command lists all of the components in the “pdb” directory, removes the “.pdb” from their
flenames, and writes them to the “names.txt” fle. Now we are ready to run
make_components:

$ make_components -template component_template.txt -values names.txt -data
saxs_data fret_data -out components

Note: You can issue any MESMER utility with just the -h (help) option to see a brief
description and the list of possible arguments.

When you issue this command, make_components goes through the “names.txt” fle line by
line, since each line represents a diferent component. It then replaces each example of the $0
wildcard with the frst element in the current line (in this case, the component's name).

make_components then searches through the saxs_data and fret_data directories for fles
matching that name, and replaces the %1 and %2 in the template with the data it reads from
matching fles.

Finally, each flled in template is written as a separate fle to the newly-created “components”
directory as “name.component”. You can (and should!) open several of these component fles
in a text editor to make sure they are correct.

Step II – Generate synthetic target data
We will now use the components to generate synthetic data consisting of a known
composition. This is very useful for testing and validation purposes.

To make a synthetic target, you will need two fles: an existing target, which will serve as a
template to determine how the resulting target data should be formatted, and a
“specifcation” fle, which tells MESMER how much to weight each component in the result
averaged target data.

These fles have already been created for you, they are “target_template.txt” and
“target_specification.txt”. As with all MESMER input fles, they are simply text, so let's
take a look:

$ cat target_template.txt
NAME template

SAXS 1.0 -file template_saxs.dat

CURV 1.0 -file template_fret.dat

Just like component fles, all target fles must possess a unique name, which is defned by the
“NAME” symbol, followed by a space or a tab, and the unique title. The following line tells
MESMER to expect a restraint of type “SAXS”, and assign that restraint a weight of 1.0.

Note: The restraint weight is diferent than the component weighting used in the target

specifcation. Restraint weights are used to diferentially emphasize one restraint type over
another. In this example, both the SAXS data and the CURV data are equally weighted.

The last option, “-file”, tells the SAXS plugin to look in a separate fle for the actual data.
When the synthetic data is created, it will be made according to this format (i.e. the X values
will stay the same, but the Y values will be calculated from the average of the specifed
components). Now let's look at the target specifcation:

$ head target_specification.txt
00000 0.00
00001 0.50
00002 0.00
00003 0.00
00004 0.00
00005 0.00
00006 0.00
00007 0.00
00008 0.50
00009 0.00
...

This fle has the name of each component in the frst column, and the fnal weight each
component's data should have in the second column. As you can see, the components 00001
and 00008 are weighted to 50% in the fnal target. No other components will have their data
included in the synthetic target, and in fact could be omitted entirely from the specifcation
fle.

$ make_synthetic_target -target target_template.txt -spec
target_specification.txt -components ./components

This will cause two fles to be generated: restraints_tutorial_template_SAXS_00000.out,
and restraints_tutorial_template_CURV_00000.out. These fles contain three columns:
the X dimension, the Y dimension of the template target, and the Y dimension of the synthetic
data. We will extract the predicted data to make a new target, or alternatively, you can skip
this step and use the pre-generated “synthetic_saxs.dat” and “synthetic_fret.dat” fles
already present in the tutorial folder.

Use Excel or another spreadsheet program to extract the X column, and the second Y column.
Alternately, you can use the program “cut” on many POSIX-compliant operating systems:

$ cut -f 1,3 restraints_template_SAXS_00000.out | tail -256 >
synthetic_saxs.dat

$ cut -f 1,3 restraints_template_CURV_00000.out | tail -256 >
synthetic_fret.dat

Note: Selecting the desired cells from most spreadsheet programs and pasting into a text-
editor will automatically convert them to a tab-delimited format.

Note: MESMER does not apply any noise to predicted/synthetic data. If you wish to simulate
the efect of instrument noise or other sources of error, you will have to do this manually.

Step III – Set the target options
Now we will build a target containing the data we just generated. Copy the template target
we used previously and open it in a text editor:

$ cp target_template.txt synthetic_target.txt

You will want to edit the copied fle (synthetic_target.txt) to look like this:

NAME tutorial_target

SAXS 1.0 -offset -scale -fitness Pearson -file synthetic_saxs.dat

CURV 1.0 -offset -scale -fitness Pearson -file synthetic_fret.dat

You should be a little familiar with this format by now. What's new are the command line-style
options present between the restraint weighting term and the -file option. From left to
right for each restraint type:

-offset Allows MESMER to vary the baseline in order to make a better ft. Good
for if your baseline subtraction may be slightly of (or unknown).

-scale Allows MESMER to scale each ensemble's average curve by a consistent
factor in order to generate a better ft to the target data. This is
frequently useful for when your data has no set or intrinsic scale.

-fitness This tells the plugin what algorithm should be used to describe the
agreement between the target and ensemble's ft data. If left blank or
omitted, MESMER will assume that you want a chi-square term
calculated. (But for that you'd need an X, Y, and dY column in your
experimental data. For now we'll just use a Pearson goodness-of-ft
value.

Note: You can run mesmer with the -plugin option (e.g. mesmer -plugin SAXS) in order to
get more information about the plugin that handles that type of experimental data.

Step IV – Testing components
Now that we have our components and synthetic target data, let's try a test run to check for
errors:

$ mesmer -target ./synthetic_target.txt -components ./components -size 1
-ensembles 10 -Gmax 0 -name tutorial_1

This tells MESMER to build 10 ensembles consisting of a single component each, and to exit
after only a single generation.

After issuing this command, MESMER will:
1. Print the parameters for the run
2. Load the input component fles
3. Create the initial parent ensembles,

4. Optimize the parent ensemble's relative component weights,
5. Perform one round of mutation and crossing to create ofspring ensembles,
6. Exit

Note: By default, MESMER will save all a log of its progress and other output fles in the
directory specifed using the "-name <dirname>" option. If no name is specifed, the results
will be saved in a directory "MESMER_Results". MESMER will not overwrite the directory from a
previous run unless the -force (force overwrite) command is provided.

Note: To see a list of all available MESMER options along with a brief description of each,
invoke MESMER with only the "-h" (help) option.

Step V – Generating ensemble solutions
For an actually meaningful MESMER run, typically the iterative process of ofspring generation
and optimization should be continued until all ensembles ft the experimental data equally
well or nearly so. This can be done by specifying by the "-Smin 0.01" (Standard relative
deviation minimum) option. This will cause the genetic algorithm to exit only when the
relative standard error (RSD) of the ensemble population is at or below the specifed value (in
this case, 1%)

To run MESMER until all ensembles have a total ftness score (in this example the chi-square ft
to the target SAXS profle) standard deviation of 1% of the average ftness score (or less),
invoke MESMER as follows:

$ mesmer -target ./synthetic_target.txt -components ./components -size 3
-ensembles 1000 -Smin 0.01 -name tutorial_2 -Pextra

This tells MESMER to use a pool of 1000 ensembles, each with three components each. The “-
Pextra” option enables extended output, mostly of best ft results at each generation. You
may wish to go get a cofee, depending on the processing power of the machine MESMER is
running on.

If you have a computer with multiple cores or processors, you will likely see a signifcant
decrease in computation time by using the "-threads <#>" command to specify the number
of parallel processing threads you wish to use.

You can also change the ensemble population size by using the "-ensembles <#>" command
(the default is 1000 ensembles, which is likely excessive when using only 18 diferent
components.)

Step VI – Interpreting output
If you open the last "components_statistics_NNNNN.tbl" fle present in the output folder
"tutorial_2" created by the above MESMER run, you should see some statistics about the
components present in the ensemble population at MESMER's fnal generation. In my case, it
took 9 generations to converge. Let's take a look:

$ cat component_statistics_00009.tbl
 Prevalence Average Stdev
 00001 100.000 % 5.001e-01 1.506e-03
 00008 100.000 % 4.975e-01 3.411e-03
 00000 16.400 % 3.702e-05 3.570e-05
 00012 13.600 % 5.170e-03 7.476e-03
 00007 12.100 % 5.880e-03 5.952e-03
 00004 9.600 % 2.185e-03 1.780e-03

...

Notice something interesting? The "Prevalence" value is the percentage that the component
appears in the total ensemble population (100% = is present in all ensembles, 0% = present in
no ensembles). This is important because it is often the case that multiple components can
provide equal or similar ftness to their respective ensembles (they may be indistinguishable
from each other, for example).

In this case, MESMER found that to generate reasonable fts, both the components 00001 and
00008 had to be present in the ensemble. Furthermore, there is little consensus as to what the
third component need be. This shouldn't be a surprise, because 00001 and 00008 are the only
two components we averaged together to make the target data in the frst place!

Furthermore, the "Average" value is the average weight of that component in the ensembles
that contain it. (A larger average indicates that it is more heavily weighted in the ensemble
averaged data used to ft the experimental data).

An inspection of the average weighting reveals that both the 00001 and 00008 components
are weighted approximately 50% in their ensembles in order to make reasonable fts. Again,
this isn't surprising, given the fact that was the weighting we used to generate the synthetic
data to being with. All of the other components are barely weighted at all.

Step VII – Making plots
If you remembered the “-pExtra” option when you ran MESMER, you can now change into
the output directory and check the ensemble fts to the synthetic target data (where n=the
last generation):

$ make_saxs_plot restraints_template_SAXS_n.out

$ make_curv_plot restraints_template_CURV_n.out

These fts are for the best-ftting ensemble current in the generation. You may save the fts
from the window that appears, or use the “-figure <file.png/pdf/gif>” option to write
directly to an image fle. For more complex situations, it may take many dozens or even
hundreds of generations before reasonable fts are achieved. Here, a good ft is often
generated on the very frst generation.

Fit plots are only the tip of the iceberg for MESMER's abilities. Say you had some parameter or
“attribute” you were interested in for each component structure. It may be the distance
between two domains, or the complex's radius of gyration.

make_attribute_plot allows users to make plots using this information that may reveal
attributes shared by the components present in ensembles selected by MESMER. Take a look
at the component_attributes.tbl fle:

$ head component_attributes.tbl
00000 1 57.642086 33.464308
00001 2 57.800968 35.440955
00002 3 57.968989 37.579125
00003 4 58.010933 39.775111
00004 5 57.957091 41.405546
00005 4 57.967573 40.131645
00006 4 57.912172 40.123374
00007 3 57.919176 38.311396
00008 4 57.930213 40.321452
00009 4 57.874812 40.343293
...

The frst column, typically, contains the component name. In this table, the second column
contains the number of Anti-TRAPs (AT) in the complex. The third and fourth columns contain
the average inter-AT-TRAP distance in the and the complex's radius of gyration, respectively.

make_attribute_plot can plot various values against one another. For example:

$ make_attribute_plot ../component_attributes.tbl -xCol 2 -yCol 3 -spec
../target_specification.txt

Because make_attribute_plot starts counting columns starting at zero (column zero is the
component name), this will plot the average AT-TRAP distance (-xCol 2) against the radius of
gyration (-yCol 3). The “-spec” option wsets the coloration of each component's point
proportional to the weighting we used to make the synthetic target. Let's now overlay our
results from MESMER (again, where n equals the fnal generation number):

$ make_attribute_plot ../component_attributes.tbl -xCol 2 -yCol 3 -spec
../target_specification.txt -stats component_statistics_template_n.tbl

This will generate blue circles with radii proportional to their average weighting by reading
the statistics from our previous MESMER run. There are many visualization options available in
make_attribute_plot. To see these options, use the -h (help) option.

Step VIII – Extracting models
In this simplistic example, we already know which components are signifcantly weighted,
and can easily fnd their pdbs. What if we wanted to get all component pdbs that were
weighted at least 10% in all ensembles?

The make_models utility can parse MESMER output fles and will copy the pdbs matching a
desired set of statistics. For example:

$ make_models ../pdbs -stats component_statistics_template_n.tbl -Wmin 0.1
-out models.pdb

This will identify components weighted at least 10% (-Wmin 0.1) in the provided statistics fle
(-stats <file>), and collect them from the provided directory containing component
coordinate fles (assuming they are named correctly!). The resulting structures are then saved
as multiple models in a single fle.

make_models can also generate coloration scripts for pyMol and attribute tables for UCSF
Chimera that will allow users to color-code the structures according to their weights or
prevalence in the ensemble pool. These are specifed using the -wPyMol or -wAttr options,
respectively.

Conclusions
There are several additional scripts and many additional options for the MESMER utilities that
are not described in this tutorial. For more information, refer to either the MESMER user
manual, additional tutorials, or use the -h (help) option present in all MESMER programs.

If you fnd errors in this tutorial or have helpful suggestions on how to improve it, please
report them to the author at elihuihms@elihuihms.com.

mailto:elihuihms@elihuihms.com

